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Abstrac t
in this paper we use combinatorial techniques to solve recurrence relatIons In

two variables of the form
T(N,k) 2 T(N/2,k) + T(N,k-1) + f(N)

and related recurrc nces. These recurrences arise in the analysis of algorithms
based on a paradigm called h1

~ultidimensional divide-and-conquer~ The analysesthat we present are interesting from a combinatorial view, and show that certain
algorithms are very efficient.
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29 May 1979 Combinatorial Solutions of Recurrences - 1 -
1. Introduction

In this paper we shall study the problem of (exactly) analyzing Multidimensional
Divide-and-Conquer (MDC) algorithms described by Bentley (1978]. The execution costs of
these algorithms are usually described by recurrence relations in two variables of the form

T(N,k) — a T(N/2,k) + b T(N,k-1) + f(N)
or

T(N,k) a T(N/2,k) + b T(N/2,k- 1) + UN)
with initial values

T(1,k) — 0(1) and T(N,2) g(N)
where a and b are integers, and f and g are functions of N. These recurrences have only
been roughly solved for fixed K. The purpose of this paper is to solve these recurrences
exactly using combinatorial techniques. The exact analysis gives us the constant factor in the
expression of T(N,k) as a function of K, and also the ability to compare MDC algorithms with
more obvious algorithms.

In Section 2 we sketch a particular MDC algorithm and derive the recurrence describing its
running time. We solve that recurrence precisely in Section 3, and in Section 4 we use the
combinatorial solution to describe the behavior of the algorithm. Section 5 is a collection of

MDC recurrences and their solutions. In Section 6 we extend the solution method to more
general recurrences, and conclusions are offered in Section 7.

2. The All-Points ECDF Algorithm

In this section we shall investigate a particular MDC algorithm and show how its recurrence
can be derived; this algorithm is due to Bentley and Shamos and is described in Bentley
(1978]. Our purpose in this section is not to learn all the details of the algorithm, but rather
to understand how its recurrenc e arises . We say that a point X

~(X1r..,Xk) in an Euclidian
k-space dominates point V if f x 1 ~ yj for all i. The 

~~~ 
r(X) of a point X Is the number of

points dominated by X. Given N points in k-space, the Alt-Points ECOF Problem is to compute
the rank of each. The following is a sketch of Algorithm ECDFk described by Bentley [1978)
for solving this problem on a set S of N points in k-space.

1.If the number of points, N, in S is one, then solve the problem in 0(1) time; if the or p
dimension, K, of the point set is two, then solve the problem In O(N Ig N) time. If W~te Sect’seither of these conditions holds, return to the caller; otherwise continue to Step 

S~1f S~ ti~ ~2.

2.Using a hyperplane normal to one of the coordinate axes (say the x-axls), divide

~UIAWJ1tff1 arnu
01st. MAIL and/er $PWIAL
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29 May 1979 Combinatorial Solutions of Recurrences - 2 -
S in two subsets A and B, each containing N/2 points.

3.Recursively solve the all-points ECOF problem on A and B (each problem of N/2
points in k-space).

4.Remarking that any point of B dominates each point of A in x-coordinate, we may
remove this coordinate and solve the reduced problem (of finding for each point
in B how many points of A it dominates) on the N points projected In
(k-i )-space.

Let us denote by T(N,k) the time for solving the all-points ECOF problem on a set of N
points in k-space. Since Step 2 can be performed in time 9(N), we find the recurrence
relation

T(N,k)—2 T(N/2,k)+T(N,k- I )+9(N). (1)
From Step 1 we have the boundary conditions2

T(N,2)-9(N log N)
T(1,k)—O(t ) .

To analyze the above recurrence we must remove the “thetas . We will therefore solve the
related recurrence

T(N,k)—2 T(N/2,k)+T(N,k- 1 )+N (2)
T(N,2)—N log N
T(1,k)—1.

The solution of the Equation 2 is always within a constant factor of solution of Equation 1,
and therefore is precise enough for our purposes.

3. Combinatorial Solution

We shall first solve Equation 2 assuming that N — 2~. For this purpose, we define
B(p,k)—T(2P,k)/2P .

Dividing both sides of Equation 2 by N and substituting this definition of B gives the reduced
system

B(p,k)— B(p- 1 ,k)iB(p,k- 1)4 1 (3)
B(p,2)-p
B(O,k)— 1.

We may easily verily that the solution to Equation 3 is

N denote. ~~~~ ~°~2 N.

d ~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



29 May 1979 Combinatorial Solutions of Recurrences - 3 -

fp4k-2~ fp+k-3~ (4B(p,l c ) — 2 ~ k-2 1+ ’t k-i 1-1.

The solution of Equation 2 is now immediate; it is

T fig N +(k-2)~ fig N .(k-3)~ 5T(N,K) — N L2~ k-2 J+~ k-i 1 — 1  (

We know now what the solution is; we do not, however, Know ~~~ it is so. To achieve a
more intuitive understanding of this solution, we shall transform Equation 3 by defining
A(p,K)—B(p,k)+1 and find a combinatorial interpretation of the new recurrence

A(p,k)—A(p-1,k)+A(p,k-1) (6)
A(p,2)—p. 1
A(O,k)—2.

let us consider the net of Figure 1. The number W(a,b)(P,k) of ways from (a,b) to (p,k) using

only edges in the network satisfies the rec urrence
Wa,b(P,k )W 5,b(P I ,K)+W~ b’P’~’ 

1)
Wab(p,O ) l
Wa b (O,k) I

which is the same as Recurrence 6, except for the bounds. Clearly, to go from (a,b) to (p,K)
we must choose (p-a) horizontal steps from a total of (p-a)+(k-b) steps (the other K-b being
vertical). This immediately y ields

fp-ask-b~WLb(p,k) — ‘ k-a I.

We therefore build the net corresponding to Equation 6 end expand it on the line k— i; this is
d picted In Figure 2. It is now easy to interpret A(p,K) in terms of counting paths, and we
find tha t

A(p,k) — 2 W0,2(p,K) + W2,1(p,k)

which yields Equation 4.

In the next section, we shall study several other recurrences using this method, whkh we
can summarize as follows.

-Manipulate the initial recurrenc e until obtaining a form similar to Equation 6.

-Build the corresponding net, and (if possible) expand it to make the bounds
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K

W
00

(p,k)
4 1 —3 5 —3 15 —)’ 35 —) 7O

1’
3 1 —)‘ 4 —> 10 —3 20 —3 35

2 1 — ~~~ 3 - - - * 6 — 3 1O —-3 15

¶4 ¶4
1

¶4 ¶4 ¶4 it it
0 1 —3’ 1 —3’ 1 —)‘ 1 —3’ 1

0 1 2 3 4

Figur. I: A very simple ret

(
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K

A (p,k)

5 2 —3’ 8 —* 21 •—)‘ 45 —~~~85

¶4 ¶4 ¶4 ¶4 ¶4
4 2 *  6 * 13 * 2 4 — * 4 0

¶4 ¶4 ¶4 it it
3 2 —3’ 4 —3’ 7 —3’ 11 ‘—3’ 16

¶4 1’ ‘1’ ¶4 ¶4
2 2 — * 2 —-* 3 —-* 4 —* 5

it it at
1

0 1 2 3 4

Figure 2: Net associated with Recurrence 6

“more simple”.

-Interpret the recurrence in terms of paths arid solve it.

4. Interpretetiov~ of the Solution

In the previous section we found that the running time of Algorithm ECOFK on a s t  of N
poInts In k-space, I or N a power of two, is given by the expression

r fig N +(k-2)~ fig N .(k-3)~T(N,k ) — N L 2 ~ k-2 J.~ k-i ~~- 1

In this section we shall interpret this solution to see what it tell us about Algorithm ECOFk.
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In many applications of the algorithm, we are interested in the case that K is fixed and N
grows; we can then use the approximation

T(N,k) — N + (N lg’~
2N). (8)

This approximation is based on the fac t that (~
) — pk/K! 4 (pt ’ ’) when K is fixed and p

grows. It is interesting to remark that the factor 1/(K-1)! in the expression of T(N,k) was stilt
unknown, and that it explains in part the efficiency of MDC.

The above analysis holds only for N a power of two. The running time of Algorithm ECDFIc
on a general set of N points in K-space is given by the recurrence

T(N,k) — T(FN/21,k) + T(LN/2i,k) +T(N,K- 1) + N (9)
T(N,2) — N Ig N
T(1,k) 1.

Note that when N is a power of two, Equation 9 reduces to precisely Equation 2 of Section 3.
We shall now show that the approximation of Equation 8 applies also to this general
recurrence. For t i- us , we Jefine the first and second differences of the function T as

AT(N,k) — TUI,k) - T(N- 1,k- 1)
— oT(N,K) - AT(N- 1,k-i).

Using the recurrence defining the function T, it is easy to find the recurrence relations
defining the differences. It becomes

£T(N,K) — £T(N,k- 1) + aT(IN/21,K) + 1
A 2T(N,K) — A 2T(N,k-1) for pvpn N
ó 21(N,k) — 1o12T(N,k-I) + £T(rNf2l,k) for odd N

We shall prove by induction on K and N that aT(N,lc) is positive for all N~1 and K�2. For k—2
we verify this easily for all N since the function N Ig N increases with N. When N—2, we have

aT(2,k)  — T(2,k) - T(t ,K) — T(1,l~) + T(2,K-1) + 1 > 0.
Assume that the first difference is positive in dimension k-i for any N. Then a sufficient
condition for £T(N,k) to be positive is that aT(FN/2~,K) is positive, and so on until we need

aT(2,k) to be positive, which is true. We have therefore proved that for any K the function

T(N,K) increases with N.

LMln~~ the same arg.mw’nt it is eacy to prove that the ~~cond difference Is always positive,
since N Ig N Is a concave function of N and i2T(2 k) — s2T(2,2) > 0. So T(N,k) I. itself a

~~~~~~~~~~~~~
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concave function of N for any fixed K. The previous results will be sufficient to prove that
Equation 8 holds for all N and for any fixed K. For this purpose, we shall find upper and lower
bounds of T(N,k) which are both of the form of Equation & Assuming that 2~ <N < 2P11, and

using the concavity of the function T(N,k), we may bound T(N,k) by S and I, as shown in
Figure 3. Both values are found using linear interpolations of T between consecutive powers
of two. The slopes of these linear interpolations being very close, we find for S and I
expressions which are equivalent to the first order to

S — I — N (k-i)! ~ l((N+2~) p~~
2)

and since p < lg N s p+l , the expressions of S and I are identical to the approximation of
T(N,k) in Equation 8. Hence we have proved that Equation 8 holds for any t*i and k?2.

T(n,K)

T(2~1~ ) 
- T(n,k)

S 

T(N,l’) :::: I: : ~~~~~T(?,k) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

2~ N 2~~
t n

FIgure 3: Approximation of T(N,k) using the concavity of the function.

This allows us to compare Algorithm ECDFK with the naive ECOF algorithm that compares all

pairs of points, which wn catl the sequential searching ($5) .tgorithm. The complexity ~f this
algorithm is 9(k N2). For fixed K and large enougis N it is clear that ECDFK is better than SS,
since 9(N lg~~

1N) < 9(N2). In some applications, however, the number of dimensions Is too
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large to enable u~ to u~e t ~e ap~rowiniation of Equation 8. We then approximate theg N+k  . 2complexity of ECOE K by c N ( K ) and the complexity of SS by K N . Figure 4 shows in
which domains each algorithm is faster , for various values of the parameter c. Since problems
Involving more than 280 (or about 1024) points will probably never be processed, Figure 4
covers the actual domain of values for K and

$ 100
~~~~~95

~~~90

~ 85

~~~80
b 75

~~~ 70

~ 65

~~~ 60
55

~ 50

~ 45
•
~~~ 4Q &

35

20 \~~~~c:O.oOI
75 C 0.Ol -- :._ --

~~~~~

10 ‘NctO. 1 ~~~
5 ~~~~~ ~~~~~~~ ~_ -- ;. .-

~ 
- ECDFK

0 ¶
~~- -~~~~.,~~~~c:jàø .

0 10 20 30 40 50 60 70 80
p • lg(aVumb.r of poi nts)

Figure 4: Comparison of ECDFIc and SS algorithms.

In the next section we shall analyze other MDC algorithms and find similar expressions for
their attributes. The same interpretation as we have presented for this problem can be done
f or the prob lems we will see, and wilt yield similar conclusions.

5. Examples

The following examples analyze the preprocessing time, storage arid query tIme of two
important algorithms, the Maxima Searching and the ECOF Searching Problems. A description
of these algorithms may be found in Bentley [19783.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5.1. Maxima Searching

The first problem that we shall analyze is that of the maxima searching data structure.
There are three attributes of this data structure to be analyzed: its preprocessing time (how
long it takes to build the structure), its query time (how long it takes to search in the
structure), and its storage (how much ~pace is required to represent the structure). The first
attribute that we shall analyze is the pr eprocessing time, which is given by the recurrence

P(N,k)—2 P(Nf2,k)+P(N,k- I )+9(N)
P(N,2)=9(N)
PC 1,k)—9( 1).

We can transform this recurrence using
8(p,k)=P(2P,k)/2P + I

Into the following system
B(p,k)—B(p- I ,lc)+B(p,k- 1)
B(p,2)—2
B(0,k)-2

which corresponds to a net similar to that of Figure 1 with somewhat different boundary
conditions. The solution is

(p+K-2
B(p,k) — 2~ K-2

and we find the preprocessing time to be equal to

fig N +(K-2)~P(N,K ) — 2 N~ K-2 ~~- N.

For fixed K, as N grows, we may approximate P(N,K) by

P(N,k) - 2 N + (N ig~~N)

We now turn our attention to the storage requirements, which are defined by
S(N,K)—2 S(N/2,K)+S (N/2,k-1)
S(N,2)—N
S(1,k)—i .

We transform , as before , by

B(p,K)—S(2P,k)
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and we have to solve the system
B(p,k)—2 B(p-1,K)+13(p-1,k-1) (10)
B(p,2)—2P
B(0,k)—l.

The associated net is drawn in Figure 5.

K

B (p,k)

6 1 3~~~~~~ 9 3 2 7~~~~~81

5 1~~~~~~~3~~~~~~ 9~~~~~~27~~~~~80

4 1 ~~~ 3 ~~~ 9 3~ 6

3 i~~3 3~~~~~~ 8 320~~~~~48

2 1~~~~~~~2~~~~~~ 4~~~~~~ 8~~~~~~16

0 1 2 3 4

Figure 5: Net associated with Recurrence 10

Clearly, a way from (0,0) to (p,k) in such a net is a sequence of K diagonal steps and of p-k
horizontal ones, each horizontal one chosen among two possibilities. So the number of ways
fr om (0,0) to (p,k) is

2 P” (~).

Returning to the recurrence, we find that
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B(p,K) — ~~~ ~~~~~~ (k
g
-I)

2~i�K

~
-..

— L 2~ ’~ i
0�i~lc-2

and the storage is

~~.- • (lg N
S(N,K) — N L 2 ’~ i

O~i~k-2

We may remark that when K > ig N +2, the equation becomes

S(N,k) — ~~~ 2’ (1
8

, N) 
— 

I~ N 
— ~i¼ ~~.

0~i�k-2

by the binomial theorem. An intuitive explanation of this fact is that for K large enough, we

may equate S(N,K) and S(N,K-1) and write
S(N,K) = 2 S(N/2,K) + S(N/2,K-1) — 3 S(n/2,k)

whose solution is precisely S(N,k) — ~
g N N1

~ ~.

At the opposite end of the spectrum, for fixed k and increasing N, we have

S(N,K) - N + EN lg~~N).

The last attribute of the maxima searching data structure Is the query time. Its associated
system is

Q(N,k)— Q(N/2,k)+Q(N/2,K- 1)’8(1)
Q(N,2)—lg N
Q(1,K)—1.

The tranformation
B(p,k)— Q(2P,lc)’l

y ields

B(p,k)—B(p-1,k)+B(p-1,k-1)
B(p,2)—p.1
B(0,k)—2.

The corresponding net Is similar to Figure 5, but there is only one way for each diagonal 

~~~---- ... —~~~~~~.a-.—- - .~~-~~- . .-_-
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step. So we find

(P-fl ~~~
-‘ IP

B(p,k ) — ~ K-1i+2 2. ~l0�isk-2

and the query time is

fig N -i~ ~~ - (lg N~Q(N,k ) — ~ k-i ~+ 2  ~~~. ~ i J - 1
O~i�k-2

Fo r fixed K, as N grows, we have

I k-INQ(N,k) — 
(k-1 ! ~ Elgk 2 N).

We must remark that the query time admits an interpretation similar to that of SectIon 4, and
similar conclusion as for the comparison with the obvious SS algorithm. At the opposite, the

storage and the preprocessing time are EN K) for SS, and hence better than those of the
MDC Maxima Searching algorithms.

5.2. ECOF Searching

The second problem that we shall study is the ECOF searching; it is described by the same
three attributes.

The pre process ing time and the storage are described by exactly the same recurrences, so
we shall restrict our attention to the preprocessing given by

P(N,k)—2 P(Nf2,k)+P(N/2,K- 1 )+9(N)
P(N,2)-N Ig N
P(1,lO—1.

The function
B(p,K)-P(2~,k)+2~

gives us the new system
B(p,K)— 2 B(p- 1,K)+B(p-1,K-1)
B(p,2)—(p+I) 2~B(0,k)—2

whose net is simIlar to Figure 5. We can expand the net by B(p,1)—2P~ for p’O. The
solution Is



~~~~~~~
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B(p,k) — 2p-k.2 (~:~) 
+ 2 ~ 2~-~ (~).

0�i~K-2

The preprocessing time and storage are given by

r (lg N-1~ . flg N~ .
P(N,k) — N I 22 k ~ k-i I + 2 2. 2 ’~ I 1 - 1

L 0si~K-2

Note that if K ~ lg N +2, then P(N,K) — 2 N~~ ~ - N. For fixed K and large N the following

approximation holds

P(N,k) — N K + EN lgk 2 N).

The last parameter to be analyzed is the query time. It is described by the system
Q(N,k)—Q(N/2,k)+Q(N/2,K- 1)
Q(N,2)-lg2 N
Q(i,K)—i .

We use the new function
B(p,k)—Q(2P,k)+ 1

and we have to solve
B(p,K)—B(p-I ,k)+B(p- 1,K- 1)
B(p,2)—p’ + I
B(0,k)—2.

For this purpose, we expand the corresponding net by noticing that B(p,i) — 2p+l and

B(p,0)—2 are convenient for p�l. It now becomes

IP-1~ IP-1~ 
•
~~~
-‘ (P

B(p,K) — 3 ~~k - 1 I+ 2 ~~ K 1+ 2  h~ ~k~42~i~k
1P~t (P-I l ~~~~~ (P

.2~ k l .~ k-1 1 + 2  2. ~l0~iSK-2

We substitute this expression in the initial equation to find

(lg N~ (lgN-1~ ~~~ - ftg N’~.
Q(N,k ) — 2 ~ K 1+’ k-i 1+2  2. ‘~ I 1-1.

O�iSk-2

Again, we may remark that If K � lg N, then Q(N,k)— 21 N — N. As usual, when K Is fIxed and N
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grows we find

Q(N,K) — 2 + Elg~~
1N).

6. More General Recurrences

We shall now study how we can solve the general reduced recurrence of the form

B(p,k) — a B(p-1,K) 4 b B(p- ,lc -1)

where —0 or 1. Ihe values of B(p,K) are initially definite on a boundary E0, and we assume

that this bound ~.. of the form of that in Figure 6. If this is necessary, we just consider a
subset of of this form.

k ,
E1

s : element of p

s —,> r
r : element of E1 I 1

s ._~~r
~
. A

p..

S —,.~.r ___). t

A A 
p

s S —.-~~r __* r —~~r 

~ :t:~1 
~

Figure 6: The sets E0 and E1 associated to a net.

We now define the set E 1 to be the set of points which are not in E0 and which can be
reached from E0 in one step. Then, for any point (pk) not in E

~
, the function B(p,k) is the

sum of the number of ways from E1 to (p,K), each way weighted by the value of B at its 

.-~~~ -. .- .--.. - -~~~~--
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starting point rj— (p~,K~
) in E1. So we find the general solution

B(p,K) — I W,(p,k) B(p1,K,)r,cE 1

As in the Section 3, W(r s)(P~
k) denotes the number of ways from (r,s) to (p,k) In the current

net. We may remark that the sum in the previous equation is finite, because W(r,s)(p,k) is null
out of a finite sub-net, for fixed (p,k).

It may happen that the values of B are sufficiently regular on E0 for allowing us to expand
the net, and this sometimes reduces to a sum involving only a constant number of terms in
the expression of B(p,K).3

Another problem is now to reduce the recurrences that appear in MOC-problems to the
previous form. The general paradigm (divide N by 2 and solve the problem in a k-i space)
shows that the natura l variables are lg N and K; so the primary change of variables is to use
p — Ig N. We therefore solve

B(p,K) — a B(p-1,K) + b B(p-(,K- l) + f(p,K)
B(p,k) — known on a bound.

The problem is to find a particu)iar solution A(p,k), in order to solve the reduced equation
verified by B-A. The only way seems to be lucK and trick, and no general method can be
exhibited here.

7. Conclusions

In this section we will briefly review the contributions of this paper. One of the main
contributions has been the detailed analysis of the Multidimensional Divide-and-Conquer
algorithms described by Bentley [1978]. We have exhibited precise analyses for many of
those algorithms, accurate to within an (implementation-dependent) constant factor. These
analyses show that the algorithms are more efficient than previously thought (It was not
known that the constant of proportionality is the very small function 1/(k!)).

In addition to analy7ing particular algorithms, we have seen a set of general tools
applicable to the analysis of algorithms in two variables. The primary analytical tools are a
set of useful transforms and an isomorphism of recurrences and path-counting problems on
networks. We have also seen a number of tools for the interpretation of recurrences; these
Include a technique for showing the ~smoothness0 of the resulting function (between powers

~~or e’tIiI~ $i, in The ,•cu,,•ncee of S.chøn 5

_
_ _  J
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of two) and a method for comparing sophisticated algorithms with more straightforward
solutions. The methods that we have seen are applicable to all of the algorithms described
by Bentley (1978), as well as other many others (such as in Lee and Wong [1979)).
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